New results on metric-locating-dominating sets of graphs

نویسندگان

  • A. González
  • C. Hernando
  • M. Mora
چکیده

A dominating set S of a graph is a metric-locating-dominating set if each vertex of the graph is uniquely distinguished by its distances from the elements of S, and the minimum cardinality of such a set is called the metric-locationdomination number. In this paper, we undertake a study that, in general graphs and specific families, relates metric-locating-dominating sets to other special sets: resolving sets, dominating sets, locating-dominating sets and doubly resolving sets. We first characterize classes of trees according to certain relationships between their metric-location-domination number and their metric dimension and domination number. Then, we show different methods to transform metriclocating-dominating sets into locating-dominating sets and doubly resolving sets. Our methods produce new bounds on the minimum cardinalities of all those sets, some of them involving parameters that have not been related so far.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Strength of strongest dominating sets in fuzzy graphs

A set S of vertices in a graph G=(V,E) is a dominating set ofG if every vertex of V-S is adjacent to some vertex of S.For an integer k≥1, a set S of vertices is a k-step dominating set if any vertex of $G$ is at distance k from somevertex of S. In this paper, using membership values of vertices and edges in fuzzy graphs, we introduce the concepts of strength of strongestdominating set as well a...

متن کامل

Locating-Dominating Sets and Identifying Codes in Graphs of Girth at least 5

Locating-dominating sets and identifying codes are two closely related notions in the area of separating systems. Roughly speaking, they consist in a dominating set of a graph such that every vertex is uniquely identified by its neighbourhood within the dominating set. In this paper, we study the size of a smallest locating-dominating set or identifying code for graphs of girth at least 5 and o...

متن کامل

Identification, location-domination and metric dimension on interval and permutation graphs. I. Bounds

We consider the problems of finding optimal identifying codes, (open) locating-dominating sets and resolving sets of an interval or a permutation graph. In these problems, one asks to find a subset of vertices, normally called a solution set, using which all vertices of the graph are distinguished. The identification can be done by considering the neighborhood within the solution set, or by emp...

متن کامل

Algorithms and Complexity for Metric Dimension and Location-domination on Interval and Permutation Graphs

We study the problems Locating-Dominating Set and Metric Dimension, which consist in determining a minimum-size set of vertices that distinguishes the vertices of a graph using either neighbourhoods or distances. We consider these problems when restricted to interval graphs and permutation graphs. We prove that both decision problems are NP-complete, even for graphs that are at the same time in...

متن کامل

Metric-Locating-Dominating Sets in Graphs

If u and v are vertices of a graph, then d(u, v) denotes the distance from u to v. Let S = {v1, v2, . . . , vk} be a set of vertices in a connected graph G. For each v ∈ V (G), the k-vector cS(v) is defined by cS(v) = (d(v, v1), d(v, v2), · · · , d(v, vk)). A dominating set S = {v1, v2, . . . , vk} in a connected graph G is a metric-locatingdominating set, or an MLD-set, if the k-vectors cS(v) ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016